gmp_gcd

(PHP 4 >= 4.0.4, PHP 5, PHP 7, PHP 8)

gmp_gcdCalcula o MDC

Descrição

gmp_gcd(GMP|int|string $num1, GMP|int|string $num2): GMP

Calcula o máximo divisor comum de num1 e num2. O resultado é sempre positivo, mesmo que um ou ambos os argumentos sejam negativos.

Parâmetros

num1

Um objeto GMP, um int ou uma string numérica.

num2

Um objeto GMP, um int ou uma string numérica.

Valor Retornado

Um número positivo GMP divisor de num1 e num2.

Exemplos

Exemplo #1 Exemplo de gmp_gcd()

<?php
$gcd
= gmp_gcd("12", "21");
echo
gmp_strval($gcd) . "\n";
?>

O exemplo acima produzirá:

3

Veja Também

adicione uma nota

Notas Enviadas por Usuários (em inglês) 8 notes

up
12
bigkm1 at gmail dot com
18 years ago
here is an elegant recursive solution
<?php

function gcd($a,$b) {
return (
$a % $b) ? gcd($b,$a % $b) : $b;
}

?>
up
0
limas at kultur-online dot at
16 years ago
The previous function returns just 1 under php 5.2.4 but the following seems to work (m>0,n>0):

function gcd($m,$n)
{
$_m=$m;$r=1;
if($m<$n){$t=$m;$m=$n;$n=$t;}
while($r)
{
$r=(floor($m/$n)*$n)-$m;
$_n=$n;$n=$r;$m=$_m;
}
return abs($_n);
}
up
0
Ludwig Heymbeeck
21 years ago
The following function is more accurate:

function GCD($num1, $num2) {
/* finds the greatest common factor between two numbers */
while ($num2 != 0){
$t = $num1 % $num2;
$num1 = $num2;
$num2 = $t;
}
return $num1;
}
up
-1
sean__remove__ at eternalrise_r_emove__ dot com
16 years ago
Here's my solution for getting the GCD of several numbers.

<?php

/*
* function gcd()
*
* returns greatest common divisor
* between two numbers
* tested against gmp_gcd()
*/
function gcd($a, $b)
{
if (
$a == 0 || $b == 0)
return
abs( max(abs($a), abs($b)) );

$r = $a % $b;
return (
$r != 0) ?
gcd($b, $r) :
abs($b);
}

/*
* function gcd_array()
*
* gets greatest common divisor among
* an array of numbers
*/
function gcd_array($array, $a = 0)
{
$b = array_pop($array);
return (
$b === null) ?
(int)
$a :
gcd_array($array, gcd($a, $b));
}

?>
up
-2
delboy1978uk at gmail dot com
7 years ago
I wanted this functionality without having to install the extension.

So here's a script I wrote to find out the greatest common denominator:

<?php

// Our fraction, 3/12, could be written better
$numerator = 3;
$denominator = 12;

/**
* @param int $num
* @return array The common factors of $num
*/
function getFactors($num)
{
$factors = [];
// get factors of the numerator
for ($x = 1; $x <= $num; $x ++) {
if (
$num % $x == 0) {
$factors[] = $x;
}
}
return
$factors;
}

/**
* @param int $x
* @param int $y
*/
function getGreatestCommonDenominator($x, $y)
{
// first get the common denominators of both numerator and denominator
$factorsX = getFactors($x);
$factorsY = getFactors($y);

// common denominators will be in both arrays, so get the intersect
$commonDenominators = array_intersect($factorsX, $factorsY);

// greatest common denominator is the highest number (last in the array)
$gcd = array_pop($commonDenominators);
return
$gcd;
}

// divide the numerator and denomiator by the gcd to get our refactored fraction
$gcd = getGreatestCommonDenominator($numerator, $denominator);
echo (
$numerator / $gcd) .'/'. ($denominator / $gcd); // we can use divide (/) because we know result is an int :-)

Which you can see running here https://3v4l.org/uTucY
up
-3
scr02001 at student dot mdh dot se
21 years ago
If you do not consier a or b as possible negative numbers, a GCD funktion may return a negative GCD, wich is NOT a greatest common divisor, therefore a funktion like this may be better. This considers the simplyfying of (-3)-(-6) where gcd on -3 and -6 would result in 3, not -3 as with the other function. (-3)-(-6) is (-1)-(-2) NOT (1)-(2)

function eGCD($a,$b){
if($a < 0) $a=0-$a;
if($b < 0 ) $b=0-$b;
if($a == 0 || $b == 0) return 1;
if($a == $b) return a;

do{
$rest=(int) $a % $b; $a=$b; $b=$rest;
}while($rest >0);
return $a;
}
up
-5
x-empt-php dot net at ispep dot cx
22 years ago
No need to compile gmp functions in just for the GCD function... use this one instead:

function GCD($num1, $num2) {
/* finds the greatest common factor between two numbers */
if ($num1 < $num2) {
$t = $num1;
$num1 = $num2;
$num2 = $t;
}
while ($t = ($num1 % $num2) != 0) {
$num1 = $num2;
$num2 = $t;
}
return $num2;
}
up
-4
me at abiusx dot com
4 years ago
function gcd($a,$b)
{
return $b ? gcd($b, $a%$b) : $a;
}

This is pretty fast and short, also easy to remember. If $b is zero, return a, otherwise swap and mod.
To Top